
Using Generic Preferences to Incrementally Improve Plan Quality

Gregg Rabideau, Barbara Engelhardt, Steve Chien

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, MIS 126-347
Pasadena, California 9 1 109-8099

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe a methodology for representing and optimizing
user preferences on plans. Our approach differs from
previous work on plan optimization in that we employ a
generalization of commonly occurring plan quality metrics,
providing an expressive preference language. We introduce
a domain independent algorithm for incrementally
improving the quality of feasible plans with respect to
preferences described in this language. Finally, we
experimentally show that plan quality can be significantly
increased with little additional modeling effort for each
domain.

Introduction
Traditionally, AI planning has focused on generating
feasible plans that satisfy a set of goals. However, in many
domains it is insufficient to simply model the hard
constraints of the system. Numerous undesirable, yet
executable plans may exist which satisfy the goals. For
example, unnecessary movements may be arbitrarily
inserted into a robot's plan, as long as it ends in the goal
position. In addition, strict feasibility constraints may be
too weak for most problems, but necessary for
completeness. For example, while it may be physically
possible to completely drain a robot's battery, reasons of
risk and longevity will make it preferable to maintain a
certain level of charge. However, this preferred charge
level, if encoded as a hard constraint, would preclude
solutions where a full battery drain was necessary. Feasible
plans may have a continuous measure of quality and only a
subset may be considered acceptable. In the robot example
above, quality continuously improves for plans with fewer
movements and less battery drain. In an over-constrained
system, quality may improve as more goals are satisfied.
We need to be able to evaluate plan variables at a finer
granularity than simply as consistent or violated. To
achieve this, we build on the traditional representation of
discrete hard constraints and mandatory goals to include
continuous soft constraints (i.e., preferences) and optional
goals. In other words, we extend the notion of what the

Copyright Q 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

plan must accomplish (and how) to what we prefer the plan
to accomplish (and how). In this way, the user can specify
which feasible solutions are more desirable, establishing a
basis for automatically generating high quality plans.

In many NASA domains, the user can have a
complicated definition of plan quality. For example,
scientists typically would like to complete as many
experiments as possible within given windows of
opportunity. Other users, such as engineers, might have a
preference for fewer power cycles of a spacecraft
instrument in hopes of extending the life of the instrument.
Certain system states may be more desirable than other
states. For example, extending an arm of a rover might
make the rover less stable, suggesting a preference to keep
the arm stowed when not in use. Some timing constraints
may be flexible but also have a preferred time. For
example, a calibration may be most useful immediately
before an experiment, but still have some utility up to five
minutes earlier. As another example, an experiment may
have several different ways of collecting data, each
resulting with different levels of data quality. We present a
general representation of plan quality that is capable of
encoding a wide range of preferences including the ones
just described.

We implement our representation of plan quality in the
ASPEN planning and scheduling system (Fukunaga et al.
1997). In addition, we demonstrate our approach to plan
optimization using a generalization of a technique called
iterative repair (Minton and Johnston 1988; Zweben et al.
1994). In ASPEN, the main algorithm for generating
feasible plans is a local, early-commitment approach to
iterative repair (Rabideau et al. 1999). During repair, the
conflicts in the schedule are detected and addressed one at
a time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a plan
constraint, and can be resolved by making certain
modifications to the plan. The most common plan
modifications include moving an activity, adding a new
instance of an activity, and deleting an activity. For each
conflict, a domain-independent repair expert automatically
generates modifications that could potentially repair the
conflict.

We adopt a similar local, early-commitment, iterative
approach to optimization. During iterative optimization,

mailto:firstname.lastname}@jpl.nasa.gov

low scoring preferences are detected and addressed
individually until the maximum score is attained, or a user-
defined time limit has been exceeded. A preference is a
quality metric for a plan variable, and can be improved by
making modifications to the plan similar to repair. For
each preference, a domain-independent improvement
expert automatically generates modifications that could
potentially improve the preference score. For example,
minimizing tardiness is a preference on the end time
variables of activities and can be improved by moving
activities to earlier times.

The iterative optimization algorithm has many of the
same desirable properties as iterative repair. First, both
algorithms take advantage of previous planning by starting
with the current plan. Solutions may be disrupted by
manual modifications or by automatic updates from
unexpected differences detected during execution.
Repairing or improving the existing plan enables a fast
turn-around time when small changes create conflicts or
degrade plan quality. Second, local search algorithms do
not incur the overhead of maintaining intermediate plans or
past attempts'. This allows the planner to quickly try many
plan modifications for repairing conflicts or improving
quality. Indeed, local stochastic search methods have been
shown to be very effective for hard planning problems
(Kautz and Selman 1996). However, unlike systematic
search algorithms, local search cannot guarantee that all
possible combinations of plan modifications will be
explored or that unhelpful modifications will not be
retried. Finally, reasoning with uninstantiated variables,
such as activity start times and resource usage, can increase
the complexity of planning systems (Wilkins 1988). The
temporal relationships and resource profiles of activities
with instantiated variables can be computed more
efficiently. Least-commitment techniques retain plan
flexibility and can reduce the number of search nodes, but
the cost per search node can be high. Further discussions
with applications to spacecraft commanding can be found
in (Chien et al. 1998).

In the next section, we describe the ASPEN planning
model. Then, we describe an extension to this model for
representing plan quality. Next, we present one possible
algorithm for optimization that uses this representation.
Finally, we introduce four realistic NASA domains with
complicated quality metrics for which we have easily
encoded preferences and quickly improved plan quality.

The ASPEN Planning Model
There are many variables of a plan that must be considered
during the planning process. Some of these variables play a
role in defining the feasibility of the plan. The set of plan
constraints identifies these variables and the values
required for successful execution.

' Some success has been shown in storing a limited history, such as with
tabu lists (Mazure, Sais and Gregoire 1997).

In ASPEN, we have adopted a planning model with an
explicit representation of constraints for time, resources
and states (Smith et al. 1998). Plan operators, called
activities, have a set of local variables including a start
time and duration. Activities may have a set of temporal
constraint variables, each specifying a minimum and
maximum separation between two activities in the plan.
Activities also share a number of global resources or state
variables. Local constraint variables may be defined in an
activity specifying the required value of a resource or state
variable for the activity. The combined effects of the
activities define the time-varying profiles (i.e., timelines)
for the values of the resources and state variables. Global
constraints can be defined for each timeline, limiting its set
of legal values. For resources, these are capacity
constraints. For state variables, the set of legal state
transitions can be specified. The ASPEN planning model
also includes a representation for activity hierarchies.
Activities can have a disjunctive set of decompositions,
each of which expands the activity into different set of sub-
activities. Each sub-activity may also have its own
decompositions. A local variable represents the currently
selected decomposition. Arbitrary functional relationships
can be expressed between any of the variables in the
activities. This allows ASPEN to make external calls to
special reasoning modules for calculating plan values, if
necessary.

Finally, ASPEN has an explicit representation of
mandatory and optional goals. Goals are simply activity
specifications that do not immediately appear in the plan.
A mandatory goal is a conflict until the activity has been
inserted into the plan (i.e., the goal is satisfied). Optional
goals are not considered conflicts but instead degrade plan
quality when not satisfied.

Representing Plan Quality
We define preferences as quality metrics for variables in
complete plans. Preferences provide a mechanism for
specifying which plan variables are relevant to plan
quality. Certain values of these variables are preferred over
others, without regard for legality. Variables for
preferences may be selected from local variables of
activities or from global variables representing features of
the plan as a whole. We define a set of preference classes
that directly corresponds to the set of plan variable classes.

Preference Variables
To better understand what types of preferences are
included in our semantics, we must describe the types of
plan variables that can contribute to plan quality. We
define five basic types:

local activity variable
activitylgoal count

0 resourcelstate variable
resourcelstate change count
state duration

P r e f e r l i n e a r l y less order wait-time
P r e f e r l i n e a r l y more observa t ion

P r e f e r l i n e a r l y more b a t t e r y min va lue
occurrences between 1 and 30 weighted 10

Figure 1 : Example preferences in ASPEN.

An activity variable preference indicates a ranking for
the values of a local variable in an activity instance in the
plan. Local activity variables include domain-specific
variables as well as internal variables for start time, end
time, duration, resource usage, temporal distance from
other activities, and selected decomposition. Typically, a
preference is made for variables with a particular name
defined in a particular type of activity. For example,
minimizing tardiness in (Williamson and Hanks 1994;
Miyashita and Sycara 1995) is a preference on the end
times of activities that fulfill factory orders. Minimizing
work in process (WIP) is a preference on the distance
between the order request and order fulfillment activities
(see Figure 1). Other preferences can score the plan based
on the number of existing activities of specific types (i.e.,
activity count). Or, one can make a general preference for
satisfying more of the optional goals. In a typical
spacecraft domain, scientists prefer to include as many
observation activities as possible in a limited window of
opportunity.

A preference can also be made for certain values of a
global resource or state variable. A resourcehtate variable
preference ranks the set of resourcehtate values that exist
within the planning horizon. For example, a preference can
be made for maximizing the minimum value of a battery
over time. Other preferences can score the plan based on
the number changes occurring on a resource/state variable
(i.e., resourcelstate change count). This type of preference
could be used to limit the number of power spikes on the
battery. Finally, a preference can be made on the duration
of a particular state on a state variable. Pointing a
spacecraft antenna towards Earth, for example, is preferred
when the spacecraft is not constrained to any other state.

Mapping to Quality Metrics
A preference is a mapping from a plan variable to a quality
metric (i.e., score) in the interval [0,1] (see Figure 2).
Specifically, a preference indicates whether the score is
monotonically increasing or decreasing with respect to the
plan variable within certain bounds'. The user can also
specify that the score increases as the difference with a
given fixed value decreases. In other words, the high score
is centered on a value selected from the domain of the
variable. From this high-level specification, mapping
functions are generated that take preference variables as
arguments and return real-valued scores.

I The mappings are internally defined as simple linear functions in order
to guarantee monotonicity.

Each preference includes an upper and lower bound to
indicate the range of the variable for which the score
increases or decreases. Any values outside this range
produce a score of either zero or one. For example,
anything over 90% battery charge may be
indistinguishable in terms of quality. Therefore, a
preference can be defined as increasing with minimum
charge and reaching a maximum score at 90% charge.
Each preference also includes a weight for specifying the
relative importance of the preference to overall plan
quality. The score of a plan is computed as the weighted
average of scores for plan variables with preferences.

Aggregate Preferences
An aggregate preference is defined for many plan
variables, and can either score each variable
independently, or score the result of applying a function to
the variables. If the preference scores each variable, then
the scores are weighted equally and averaged. The built-in
functions that can be used in aggregate preferences include
average2, sum, minimum, and maximum. These functions
constitute the set of functions most commonly observed in
preferences from various domains. For example,
minimizing makespan is a preference on the maximum end
time of all activities in the schedule. The specified function

lower upper
bound bound

a) t I I I
I I

score ; activity
I end time

score ; activity
I end time

I I
I I

0 '
I I .

6hrS 7hrS

center
value

score activity
separation

1 Orhin 12min

Figure 2: a) Mapping the end time of an activity to a score.
This implements a preference for minimizing tardiness of an
activity. The deadline is at the sixth hour and the score
decreases to zero one hour after the deadline. b) Mapping the
distance between two activities to a score centered on a given
value. This implements a preference for maintaining a 10
minute separation with a k2 minute tolerance.

~~~ 

The  score  of  the  average  can  be  quite  different  from  the  average  score 
of a set  of  variables. In particular,  this  difference  is  clear  when  the 
preference is centered  on  a  value. 



is computed for the current set of plan variables, and the 
result is mapped to a score for the preference. 

Improving Plan Quality 
Preferences allow us to define quality metrics for 
evaluating feasible plans and making quantitative 
distinctions between different plans. The next step is to use 
these preferences to produce high quality plans. 
Preferences can be used as heuristics when generating a 
feasible plan or to directly improve the quality of an 
existing plan. We interleave repair-based planning with 
preference-driven, incremental optimization. 

Local Improvement Experts 
In addition to establishing quality metrics, preferences can 
provide insight into how to improve plan quality. We 
define domain-independent improvement  experts to aid in 
optimization (see Figure 3). Improvement experts are 
based solely on the class of preference (and variable) for 
which it is constructed. An instance of an expert uses the 
preference specification to calculate plan modifications 
that will improve the score for the given preference and 
current plan. In other words, an expert is a link between 
changes in the plan and the change in quality. For example, 
if less resource usage were preferred, expert improvements 
would include deleting an activity that is currently using 
the resource. It is a local expert, however, and does not 
guarantee an increase in overall plan quality. Improvement 
experts provide a framework for optimization algorithms, 
defining the search space of possible improvements. We 
define a separate class of improvement expert for each 
class of preference. 

Local activity variable expert. One class of expert is 
used for improving preferences on local activity variables. 
The most obvious modification for improving this 
preference is to change the value of the local variable. The 
expert only considers variables that are currently 
contributing to the low score. For example, only the end 
time of activity a2 in Figure 3 can be changed to improve 
the score for this preference. If score is a decreasing 
function of the variable, then making an improvement 
requires assigning a value less than its current value. 
Likewise, we must assign a value greater than its current 
value to improve an increasing preference. In cases where 
the variable is the start or end time of the activity, 
assigning a value implies moving the activity to earlier or 
later times. Expert modifications also include creating 
activities with high scoring values or deleting activities 
with low scoring values for the specified variable. 

Activity/goal count expert. A different class of 
improvement expert is used for preferences on the number 
of activitieslgoals. For a given preference of this class, 
there is only one expert modification. When the preference 
is for more occurrences of a goallactivity, creating new 
activities is the only beneficial modification. When the 

Preference: 

Expert: 
less min  battery level 

who? a3, a4, typeof(a5) 
what?  delete,  create 
where? < t2 or > t3 

Preference: 

Expert: 
earlier  end  time 

who? a2 
what?  move, delete, . . . 
where? < t3 

battery 
level 

,,,,,: ........ ... .........,. ..... 

to t l  t2 ....... .,,.,.,,, , , , ,  ,.....,..... . / "  t3 t4 

time + 

Figure 3: Local improvement  experts. 

preference is for fewer occurrences, deleting existing 
activities is the only improvement. 

Resource/state variable expert. Another class of expert 
improves preference scores for the values of resources or 
state variables. Only activities that use the resource or state 
variable are considered. For a high resource preference, the 
expert selects activities that increase the resource when 
adding and activities that decrease the resource when 
deleting. Just the opposite is true for low resource 
preferences. When moving, if the preference is for a higher 
minimum resource value, activities that decrease the 
resource during this time can be moved away from the 
minimum value. In Figure 3, activities a3 and a4 both 
contribute to the low minimum battery level. If the 
preference is for a lower maximum resource value, 
activities that increase the resource during this time can be 
moved away from the maximum value. Similar (but 
probably less useful) cases exist for higher maximum and 
lower minimum resource values. Moving an activity does 
not significantly change the average resource value and 
therefore is not considered for preferences on averages. 

Resource/state change count expert. A simpler class of 
expert is used for improving scores of preferences on the 
number of times a resource or state variable changes over 
time. Adding activities that use the resource or state 
variable will increase the number of changes. Deleting will 
decreases the number of changes. Because each activity 
makes a constant number of changes on a resourcelstate 
variable, moving has no impact on the change count. 

State duration expert. The last class of improvement 
expert works on state duration preferences. Activities that 
change the state variable can be created, deleted, or moved 



in order to change the amount of time planned in a 
particular state. When the preference is for a longer 
duration, activities that change to the specified state can be 
created at times when the variable is in a different state. 
Conversely, when the preference is for a shorter duration, 
activities that change to any other state can be created at 
times when the variable is in the specified state. For 
example, an activity that switches an instrument off can 
shorten times where the instrument has been left on. 
Similar reasoning is used when deleting or moving 
activities. 

Monotonic Preference Assumption 
In order to make improvement calculations tractable, we 
make a monotonic preference assumption, requiring each 
mapping from plan variable to quality metric to either be 
consistently increasing or decreasing within a given range 
of the variable. For preferences centered on a value, the 
score must increase for values less than the specified center 
value, and decrease for values greater than the center 
value. In this way, the problem can be restated as simply 
identifying modifications that increase or decrease the 
current values of plan variables participating in 
preferences. For example, if a variable with integer domain 
[ 1, IO] and current value 4 has a decreasing preference, 
then only values in the range [ 1,3] will increase the score 
for this preference. 

Iterative Optimization 
The full set of potential plan improvements can be quite 
large. Once the expert has calculated this set, we search for 
more optimal plans by iteratively selecting and making 
improvements (see Figure 4). We call this technique 
iterative  optimization because of its similarity to iterative 
repair techniques used for repairing plan conflicts (i.e., 
constraint violations). More specifically, the iterative 
optimization algorithm first selects a preference from the 
list of low-scoring preferences. Typical heuristics for this 
decision include selecting a preference with one  of the 
lowest scores or one with the most potential gain (weight * 
(1 - score)). Next, the algorithm must decide which type of 
modification to perform for the selected preference. 

We allow several types of plan modifications in ASPEN. 
New activities can be instantiated from types defined in the 
domain, scheduled activities can be moved to different 
time or simply deleted, and local variables in activities can 
be changed. For each type of modification, there are 
additional decisions that must be made before applying the 
modification. When creating a new activity, the activity 
type must be selected and values must be assigned to 
variables in the new activity instance. When moving, an 
existing activity and a new start time must be selected such 
that the resulting preference score is increased. 

As an example, consider a preference for a high 
minimum resource availability. The preference expert 
would find activity types that provide the resource and 
existing activity instances that consume the resource at the 

Iterative Optimize (T) 
Let P = Pbesl = current plan 
Let S = Sbest = score(P) 
While (S <1 and time < T) 

If conflicts exist, Then repair(T-time) 
Else 

Let Q = set of preferences with score < 1 
q = choose(Q) 
M = E,(P) //get the set of modifications 
m = choose(M) 
P = m(P) // apply the chosen modification 
S = score(P) 
If (S > Sbest) // save if best-so-far 

Sbest = s 
Pbest = 

Return Pbest 

Figure 4: The ASPEN optimization algorithm. E (P) returns 
the set of modifications for plan P calculated  by &e expert E 
for improving  preference q. 

time of minimum availability. The expert would also 
suggest adding the provider at the time of minimum 
availability or moving the consumer to any other time. In 
short, the improvement experts provide information as to 
which alternatives for each decision are useful for 
optimization. 

After making a local improvement, the resulting plan 
may not be optimal. The iterative optimization algorithm 
continues by selecting another preference, and repeating 
the improvement process. After each improvement, the 
resulting overall score is compared with the best score 
achieved so far. If the current score exceeds the best score, 
the current plan is saved. The algorithm halts when the 
maximum score is attained, or when a specified time limit 
is reached. If an optimal plan was not found, the saved 
plan with the best score is returned. 

Maintaining Feasibility 
When making modifications during iterative optimization, 
a few simple, domain-independent heuristics are used to 
avoid violating hard constraints. However, some 
improvements may require creating new conflicts. 
Adhering to the plan constraints may  be too restrictive, 
precluding modifications necessary for improving quality. 
Therefore, the iterative optimization algorithm may create 
infeasible intermediate plans while searching for an 
optimal plan. However, because it is unknown how the 
plan will change to achieve feasibility, we do not attempt 
to define quality for inconsistent plans. Plans with 
violations are assigned the minimum possible score and the 
iterative repair algorithm is invoked to restore feasibility 
before continuing with optimization. 

Competing Objectives 
The iterative optimization algorithm does not perform 
strict hill-climbing. Since modifications are applied to 
increase the score for a single preference, scores for other 
preferences may have suffered and the overall score for the 



plan may have decreased after a single iteration. This 
suggests that a subset of the preferences represent 
competing objectives. Although we focus on  a single 
preference at each step in optimization, we do not 
necessarily maximize the preference score. We only 
attempt to increase the score by stochastically choosing 
one of the potential improvements. Therefore, we  would 
expect competing preferences with a large disparity to 
eventually reach a compromise rather than thrash between 
a high score for one and a low score for the other. 

Continuous Improvements 
During execution we may notice differences between 
actual and expected values for activities or resources. 
These differences may violate hard constraints or degrade 
plan quality. The CASPER system (Chien et al. 1999) was 
developed to continuously initiate and monitor the 
execution of an ASPEN plan, updating the plan when 
necessary. As the result of a plan update, CASPER uses 
the iterative algorithms to fix new conflicts and improve 
preference scores. In this way, CASPER provides 
continuous planning and optimization during the course of 
execution. 

Experimental Results 
We now describe our initial experiments with incremental 
optimization on several NASA domains. An ASPEN 
planning model was developed for each domain, including 
user preferences on various plan features as well as the 
typical activity definitions and hard constraints. Each 
model required less than ten lines of text describing the 
preferences in the ASPEN preference language. Then, 
iterative optimization and repair were run on randomly 
generated problem instances of three different levels of 
difficulty. The problem difficulty has many factors 
including the number of goals, the complexity of the goals, 
and the length of goal opportunity windows. Initially, there 
are no satisfied goals, and the algorithm continues to do 
one of three things: 1) satisfy a goal by adding the 
requested activity to the plan, 2) improve the score for any 
of the other preferences, or 3 )  repair conflicts created by 1 
or 2. 

Each problem was run on  a Sun Sparc Ultra-60. After 
five minutes of planning and optimization, the saved plan 
with the maximum overall score is reloaded and the 
relevant data is recorded. Results from each problem size 
were averaged over 100 runs and are shown in the left- 
hand column under each problem size in the tables. 
Approximate “ optimal” values were manually estimated 
for comparison and are shown in the right-hand column 
under each problem size in the tables’. It  is important to 
note that the “optimal” values were estimated for each 
preference in isolation. In other words, each represents the 

’ The  complexity  of  the  problems  makes  it  difficult  to  define  true  optimal 
plan  values. 

best value that we can hope for even if all other 
preferences were ignored. Given this, most values 
approach the “ optimal” value within reason. 

New Millennium ST-4 
ST-4 is a proposed spacecraft designed to land on a comet, 
mine core samples of the surface, and return a sample to 
Earth. The model has 6 shared resources, 6 state variables, 
and 22 activity types. Resources and states include a 
battery, bus power, communications, drill location, drill 
state, 2 oven states for the primary and backup ovens, 
camera state, and RAM. There are two activity groups that 
correspond to different types of experiments: mining and 
analyzing a sample, and taking a picture. There is a 
downlink activity type that replenishes the RAM buffer by 
transmitting data to Earth. Each ST-4 problem instance 
includes fixed profile that represents the comet-landed 
phase of the mission with randomly generated oven 
failures. Each problem also includes requests for mining 
and picture experiments at random start times. 

The ST-4 model includes preferences for: more science 
goals, using the primary oven, higher minimum battery 
level, fewer downlinks, later downlinks (so they might 
transmit more data), fewer drill operations, and fewer oven 
operations. Interactions come from science goals lowering 
the battery level and requiring a downlink when the RAM 
buffer is full. 

Table 1 gives the results for the average values for each 
of the preference variables in the best ST-4 plan. The 
“goal count” refers to the average number of satisfied 
goals versus the average number of requested goals. The 
second row gives the percent of goals that use the backup 
oven. The backup oven is required when the primary oven 
fails or is oversubscribed. While the numbers show that 
plans that use the primary oven are preferred, it is not clear 
what minimum percent of goals must use the backup oven. 
Therefore, these cells contain a dash (-) in the table. The 
average number of downlinks planned is shown in the third 
row while the average downlink amount is in the fourth 
row. The downlink buffer holds 30 MB and each 
experiment uses 5 MB, forcing a downlink after 6 
experiments. In the best case, each downlink would 
replenish all 30 MB. The fifth row gives the number of 
operations planned for the primary oven. Half of the 
experiments require an oven, each of which may require 3 
oven operations (preheat, heat, cool). Therefore, the 
“optimal” value is calculated by multiplying 3 times the 
average number of goals that use the primary oven (any 
more would be unnecessary operations). 

Table 1 : ST-4 results. 



I' 

ST-4 

16 goals -------- 
24 goals .--- 

8 goals - - 

0 - 0 
0 50 100 150 200 250 300 0 50 100 150 200 250 300 

CPU Time (sec) CPU Time (sec) 

Figure 5 :  a) The  change in the score of the  "best-so-far"  plan for 8, 16 and 24  requested  ST-4  goals.  The final score  is  lower for more 
difficult problems  because a smaller  percentage  of the requested goals  are satisfied. Also, the score increases  more  slowly for the  more 
difficult problems. b) The  change in  the individual  preference  scores for the  24 goal ST-4  problem.  The  preference  for  satisfying  goals 
is weighted  higher,  allowing  optimization to somewhat  lower  scores for other preferences in order to  increase the goal preference.  The 
scores  quickly  reach a stable  state  where the utility of adding a goal does not justify  the  decrease in other  quality  metrics that is 
necessary to support the new goal. 

Figure 5 shows the performance of optimization in the 
ST-4 domain. Only the change in score is important, as the 
absolute score values are somewhat arbitrary. The graphs 
for the other domains are similar and therefore omitted. 

New Millennium EO-1 
New Millennium Earth Observer 1 (EO-1) is an Earth 
imaging satellite featuring an advanced multi-spectral 
imaging device. EO-1 mission operations consists of 
managing spacecraft operability constraints (power, 
thermal, pointing, buffers, consumables, telecomm, etc.) 
and science goals (imaging surface targets within specific 
observation parameters). One of the interesting constraints 
involves the Solar Array Drive (SAD) which keeps the 
solar arrays facing the sun. For a few minutes before and 
during each data-take, the SAD must be locked to avoid 
spacecraft jitter, which can corrupt data. The EO-1 model 
consists of 14 resources, 10 state variables and total of 38 
different activity types. Each EO-1 problem instance 
includes a randomly generated, fixed profile that represents 
typical sun and cloud patterns. Each problem also includes 
randomly placed science requests for observations and 
calibrations. The size of the problem varies from 2 to 6 
days, and for each day, four additional observation and 
calibration goals are added. 

The EO-1 model includes preferences for: more science 
goals, more time with the SAD tracking the sun, fewer 
changes of the SAD state, and less deviation from the 
preferred separation of data-take and SAD locking 
activities. The last preference has a high score centered on 
a value because if the settling time is too small there will 
be too much jitter, but if the separation is too large the 
solar array power output will suffer. 

Table 2 gives the results for the average values for each 
of the preference variables in the best EO-1 plan. The 
second row gives the number of hours planned for the 
SAD in the "tracking" state while the third row gives the 
number of SAD operations in the plan. In the best case, the 
SAD would simply track the sun 24 hours a day. However, 
the observations require a small amount of time with the 
SAD locked, which requires one operation to lock the SAD 
and one to return it to tracking mode. The last row contains 
the average number of minutes between each SAD lock 
activity and the subsequent data-take. The desired 
separation is five minutes. 

Table 2: EO-1 results. 

Data-Chaser 
Data-Chaser is a shuttle science payload that flew onboard 
Space Shuttle Flight STS-85 in August 1997. The model 
consists of 19 shared resources, 24 state variables, and 72 
activity types. Resources and states include shuttle 
orientation, contamination state, 3 scientific instruments 
(including apertures, relays, heaters, etc.), several RAM 
buffers, tape storage, power (for all instruments/devices), 
and downlink availability. Each Data-Chaser problem 
instance includes a randomly generated, fixed profile that 
represents shuttle orientation and contamination states. We 
generate plans for 1 to 3 days of mission operations. The 



number of randomly generated science requests is based on 
the fixed profile and the number of days for the given 
problem instance. 

The Data-Chaser model includes preferences for: more 
science goals (Le., experiment data-takes), earlier data-take 
start times, fewer relay changes, and less duration of the 
relay “on” state. These preferences are interesting for 
several reasons. First, data-takes cannot overlap and 
require the relay to be in the “on” state. Therefore, more 
data-takes will require a longer “on” state duration. 
Second, shortening the duration of the “on” state might 
require more changes of the state of the relay. 

Table 3 gives the results for the average values for each 
of the preference variables in the Data-Chaser plan with 
the maximum overall score. The second row contains the 
average number of changes of the relay state variable in 
the plan. Experiments in the plan tend to be grouped 
during windows of opportunity (approximately 1 per day). 
Therefore, the approximate “optimal” number of relay 
switches is twice the number of days (one turning the relay 
on and one turning it off). The third row gives the average 
amount of time (in hours) planned for the relay to remain 
in the “on” state. The relay should stay on during each 
window of opportunity and each window is approximately 
30 minutes long. Therefore, the “optimal” duration is 
about 0.5 hours for every day  of operations. The values for 
goal and relay counts are somewhat reasonable. It is 
unclear why resulting plans were so poor with respect to 
the “on” duration preference (the relay was left in the 
“ on” state much longer than necessary). 

Problem Size 3 days 2 days 1 day 
goal count 5.88 

1.5 16.3 1 12.3 0.5 18.5 “on” duration 
6 8.98 4 7.21 2 3.26 relay  count 
23.1 13.1 13.0 9.14 6.66 

Table 3: Data-Chaser results. 

Rocky-7 Mars Rover 
Rocky-7 is a prototype Mars rover for long-range 
planetary science gathering. The model consists of  18 
shared resources, 12 state variables and 32 activity types. 
Resources and states include 3 digital cameras (at the front, 
rear, and on  a mast), a deployable mast, a shovel, a 
spectrometer, solar arrays, batteries, and a RAM buffer. 
There are five activity groups that correspond to different 
types of science experiments: one for collecting 
spectrometer readings, and four for taking images at a 
location (a front image, a rear image, a panorama using the 
mast, and a closeup image using the mast). Rover 
problems are sized by the number of hours of daylight (all 
operations require illuminated solar arrays). A series of 
science goals are generated corresponding to the number of 
hours of daylight, and the parameters for the goals are 
randomly generated (such as target locations). For each 
additional hour of daylight, ten additional goals are added 
spread over two new locations. Repair heuristics include 

traveling salesman heuristics, which attempt to order the 
rover traversals such that the total distance traveled is 
minimized. 

The Rocky-7 model includes preferences for: more 
science goals, less traversing, less time with the mast 
deployed, fewer mast deploy and stow operations, and a 
higher minimum battery level. This set also contains 
interacting preferences. For example, adding science 
activities will drain the battery and may require mast 
operations and a rover traversal. 

Table 4 gives the results for the average values for each 
of the preference variables in the best Rocky-7 plan. 
Again, the first row contains the number of satisfied goals 
versus the number of requested goals. While the number of 
satisfied goals does not significantly increase when more 
goals are requested, the goals are spread across more 
locations making the problem more difficult. The second 
row contains the average number of traverses made by the 
rover and the third row gives the average number of 
minutes spent traversing. Each hour contains goals at two 
different locations, which requires two rover traverses. The 
rover is traveling one meter per minute over a 20 square 
meter area. The minimum required traversal time, 
however, is difficult to estimate and has been omitted. The 
fourth row gives the number of minutes planned for the 
mast in the “deployed” state while the sixth row gives the 
number of mast operations in the plan. The  “optimal” 
number of mast operations is estimated as two per location, 
one to deploy it for the goals and one to stow it before the 
next traverse. At a minimum, the mast would need to be 
deployed for six minutes at each location. The last row 
gives the minimum battery level for the plan. The 
maximum minimum level is estimated assuming the 
battery is recharged after every operation (which is quite 
optimistic considering the time required to recharge). 

Table 4: Rocky-7 results. 

Related Work 
Much of the recent work in plan optimization has been 
looking at ways to integrate linear programming (LP) 
techniques with symbolic AI and constraint propagation 
(Baptiste, Le Pape, and Nuijten 1995; Hooker et al. 1999; 
Kautz and Walser 1999; Vossen et al. 1999). Typically, LP 
equations are used to represent numeric constraints and 
objectives in conjunction with STRIPS-style planning 
operators. While LP formulations have the advantage of 
taking a global view of plan quality, they can be difficult to 



develop and computationally expensive to solve when 
including representations for state, resource, and temporal 
constraints. Moreover, there is no sense of incremental 
improvements. Slight changes in the problem specification 
require a restart of optimization and may result in a 
drastically different solution. 

PYRRHUS (Williamson and Hanks 1994) is a partial- 
order planner that has been extended to handle metric 
resources, time and a utility model. Utility is defined as 
achieving goals early and using a minimal amount of 
resources. While we do not attempt to define utility on 
incomplete plans, partial-order planners must evaluate the 
utility of partial-plans in order to address optimization. The 
PYRRHUS algorithm uses a branch-and-bound search, 
discarding partial plans whose upper bound on utility is 
less than the utility of the current best complete plan. In 
order to compute the upper bound on utility of partial 
plans, they require the representation to have an overall 
utility function that is monotonically non-increasing as 
refinements are made. This is significantly more restrictive 
than our assumption, which only requires that the 
individual components of utility be monotonic. They 
define utility as a decreasing function of missed deadlines 
and resource consumption. This is a specialization of our 
utility model and is less applicable in some domains. 
Spacecraft commanding problems, for example, typically 
are more concerned with packing science into limited time 
windows, rather than meeting deadlines. 

(Myers and Lee 1999) view the optimization problem as 
providing a set of qualitatively different plans, which can 
then be further refined by human planners. Plans are 
generated with the SIPE-2 planner modified to produce a 
good sampling along the various dimensions of quality. 
This appears to be very useful for domains with a high 
degree of interaction between quality metrics, or with little 
understanding of the overall quality. Preferences and their 
weights could be identified using a mixed-initiative 
approach. Once quality is well-defined, however, it 
becomes more desirable to find a single, high-quality plan. 

The CABINS (Miyashita and Sycara 1995) system uses 
a similar iterative optimization algorithm to improve 
complete but sub-optimal schedules. Here, case-based 
reasoning (CBR) is used to learn control rules for 
optimization problems. While CABINS focuses on an 
individual activity when attempting modifications for 
improvement, we focus on an individual quality metric. 
But the main difference from our approach is  that 
preferences are stated for scheduling decisions rather than 
for values of variables. In addition, preferences are learned 
in  a case acquisition phase, where the user implicitly 
makes preferences by evaluating the problem solving 
results. While the user is not required to supply the set of 
objectives, the user must provide an explanation of their 
evaluation, which includes weighting the impact of the 
modification on each objective. 

Our approach is a specialization of black-box 
optimization techniques. Black-box algorithms proceed 
with no knowledge of the quality function and iteratively 

sample the quality surface using various search methods. 
While these techniques are generic and can optimize 
arbitrary quality functions, the large search space makes 
both finding and applying the appropriate technique 
prohibitively expensive. In contrast, we can pinpoint 
moves that have potential for improvement, and vastly 
prune the search space by simply assuming monotonicity 
along individual dimensions of quality. While this 
somewhat limits the expressiveness of quality, we do not 
believe it to be  a burden in many planning domains. 

Discussion and Future Work 
In general, our technique is more likely to perform well on 
problems with local, non-interacting preferences. On each 
iteration, our optimization algorithm reasons with only a 
single preference (and a single parameter in an aggregate 
preference). Improving preferences that require 
simultaneous evaluation will be more difficult (i.e., require 
more search). For example, during makespan 
minimization, moving one activity earlier in the sequence 
may require another activity to finish later and increase 
makespan. Although our preferences are general enough to 
represent global problems such as makespan minimization, 
iterative optimization is not likely to perform as well as 
algorithms designed specifically for this task. 

In future work, we would like to compare the 
performance of our approach to constraint relaxation 
techniques. One could start over-constrained to the 
preferred values and then relax the constraints, or start 
under-constrained and then incrementally optimize toward 
the preferred values. Initially, constraint relaxation may be 
closer to optimal plans, but further from feasible ones. 
Incremental optimization quickly finds a feasible plan, but 
one that may be far from optimal. At this point it is unclear 
which would perform better. We would also like to make 
use of the preference experts in plan construction. While 
constructing or repairing a plan, preference experts might 
be able to give heuristic information about which decisions 
are more likely to result in high quality plans. Although the 
overall quality of an incomplete plan is not well-defined, 
the relative quality of some decisions can be computed. 

Finally, while this paper focuses on iterative 
optimization, much of our effort was in developing a 
representation of plan quality and a framework for 
optimization. This will facilitate the implementation of 
more sophisticated search algorithms in future work. For 
example, the “ Squeaky Wheel” optimization algorithm 
( J o s h  and Clements 1999) could be implemented in our 
framework. In this case, we might consider low-scoring 
preferences as the “squeaky wheels” and move them 
closer to the front of the queue of preferences waiting to be 
optimized. 



Conclusions 
We have described an approach  for representing and optimizing 
user quality metrics (i.e., soft constraints) using generic 
preferences for  values of variables that occur in a plan. In our 
approach,  the set of local improvements can be efficiently 
computed for each preference in  a domain-independent fashion. 
To accomplish this,  the representation is restricted to monotonic 
functions  for  mapping  plan  values to quality metrics. We have 
demonstrated the  feasibility  of our approach by implementing 
and empirically evaluating  a local search algorithm  for iterative 
optimization on four different domains. 

Acknowledgment 
The research described in this paper was performed at  the 
Jet  Propulsion  Laboratory,  California  Institute of 
Technology, under a contract  with  the  National 
Aeronautics and Space Administration. 

References 
Baptiste, P.; Le Pape, C.; and Nuijten, W. 1995. Incorporating 
Efficient Operations Research Algorithms in Constraint-Based 
Scheduling, In Proceedings of the First International Joint 
Workshop on Artificial Intelligence and Operations Research. 

Chien, S.; Knight,  R.;  Stechert,  A.;  Shenvood,  R.;  and Rabideau, 
G. 1999. Integrated Planning and Execution for Autonomous 
Spacecraft, In Proceedings of the 1999 IEEE Aerospace 
Conference. 

Chien, S.; Smith,  B.;  Rabideau, G.; Muscettola, N.; and Rajan, K. 
1998. Automated Planning  and  Scheduling  for Goal-Based 
Autonomous  Spacecraft, IEEE Intelligent Systems, 
September/October, 50-55. 

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D.; 1997. 
Toward  an Application Framework  for Automated Planning and 
Scheduling, In Proceedings of the 1997 International Symposium 
of Artificial Intelligence, Robotics and Automation for  Space 
(iSAIRAS-97), Tokyo,  Japan. 

Hooker, J. N.; Ottosson, G.; Thorsteinsson, E. S.; and Kim, H. 
1999. On Integrating Constraint Propagation and Linear 
Programming  for  Combinatorial Optimization, In Proceedings of 
the Sixteenth National Conference on Artificial Intelligence 
(AAAI-99), 136- 142. AAAI Press. 

Joslin, D.;  Clements, D. 1999. “Squeaky Wheel” Optimization, 
Journal ofArtificial Intelligence Research 10:353-373. 

Kautz,  H.;  and  Selman,  B. 1996. Pushing the Envelope: Planning, 
Propositional Logic, and Stochastic  Search, In Proceedings of the 
Thirteenth National Conference on Artlfcial Intelligence (AAAI- 
96), 1 194- 1201. AAAI Press. 

Kautz, H.;  and Walser, J. 1999. State-space Planning by Integer 
Optimization, In Proceedings of the Sixteenth National 
Conference on Artificial Intelligence (AAAI-99),  526-533. AAAI 
Press. 

Mazure, B.;  Sais, L.; and Gregoire, E. 1997.  Tabu Search for 
SAT, In Proceedings of the Fourteenth National Conference on 
Artificial Intelligence (AAAI-97), 281-285. AAAI Press. 

Minton, S.; and Johnston, M. 1988.  Minimizing Conflicts: A 
Heuristic Repair Method for  Constraint  Satisfaction and 
Scheduling Problems, Artificial Intelligence 58: 16 1-205. 

Miyashita, K.; and Sycara, K. 1995.  CABINS:  A  Framework of 
Knowledge Acquisition and Iterative Revision for  Schedule 
Improvement and Reactive Repair, Artificial  Intelligence, 76( I - 
2):377-426. 

Myers, K. L.; and Lee, T. J. 1999.  Generating  Qualitatively 
Difference Plans  through  Metatheoretic Biases, In Proceedings of 
the Sixteenth National Conference on Artificial Intelligence 
(AAAI-99), 570-576.  AAAI Press. 

Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A,; Govindjee, A. 
1999. Iterative Repair Planning  for  Spacecraft  Operations  Using 
the ASPEN System, In Proceedings of the 1999 International 
Symposium of Artificial Intelligence, Robotics and Automation 
for Space (iSAIRAS-99). 

Smith, B.; Sherwood, R.; Govindjee, A.; Yan, D.;  Rabideau, G.; 
Chien, S.; and  Fukunaga, A. 1998.  Representing  Spacecraft 
Mission Planning  Knowledge in ASPEN, Artificial Intelligence 
Planning Systems Workshop on Knowledge  Acquisition, 
Pittsburgh, PA. 

Sycara, K.;  Dajun Zeng; and Miyashita, K. 1995. Using Case- 
Based Reasoning to Acquire User Scheduling Preferences that 
Change  Over  Time, In Proceeding of  the Eleventh Conference on 
Artificial Intelligence for Applications, 240 -246. 

Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On the Use 
of Integer Programming  Models in AI Planning, In Proceedings 
of the Sixteenth International Joint Conference on ArtiJicial 
Intelligence (IJCAI-99). 

Wilkins, D. E. 1988. Practical Planning:  Extending  the Classical 
AI Planning  Paradigm, Morgan Kaufmann. 

Williamson, M.; and Hanks, S. 1994. Optimal Planning  with  a 
Goal-Directed Utility Model, In Proceedings of the Second 
International Conference on Artificial Intelligence Planning 
Systems (AIPS-94), 176-1 8 1. AAAI Press. 

Williamson,  M; and Hanks, S. 1996.  Flaw  Selection Strategies 
for Value-Directed Planning, In Proceedings of  the Third 
International Conference on Artificial Intelligence Planning 
Systems (AIPS-96),  237-244. AAAI Press. 

Zweben, M.; Daun, B.;  Davis, E.; and Deale, M. 1994. 
Scheduling and Rescheduling with Iterative Repair, In Intelligent 
Scheduling, Morgan Kaufmann, San Francisco,  CA. 241 -256. 


